
1

Chapter 3

Overview of JavaScript

2

3.1 Overview of Scripting Language

 There is a definite need to allow users, browsing through a web site, to actually interact

with the web site. The web site should accept the users input and should structure the

web page content accordingly.

 Users, who browse through a web site today, prefer to choose to view what interest

them. Thus, based on a user’s wish the content of a web page needs to be dynamic.

 This requires a web site development environment that will allow the creation of

interactive web pages. These web pages will accept input from a user, based on the

input received return customized web pages, both in the content and presentation, to the

user.

 In the absence of any user input the web site must be intelligent enough to return a

default web page containing predetermined information and text formatting.

 This calls for a web site development environment with coding techniques capable of

accepting a client’s requests and processing these requests. Result of the processing

being passed back to the client via standard HTML pages.

 Capturing user request is traditionally done via a Form. Form input is validated and then

sends to the web server for further processing.

 A script is defined as set of instructions. For Web pages they are instructions either to

the Web server (server-side scripting) or to the Web Browser (client-side scripting).

 Scripting languages, are written within HTML, to add some functionality to a Web

page.

 There are two types of scripting languages:

o Client side scripting languages affecting the data that the end user sees in a browser

window.

o Server-side scripting languages that manipulate the data, usually in a database, on the

server.

 JavaScript, ASP, JSP, PHP, Perl and Python are examples of scripting languages.

3.1.1 Client side Scripting

 Client-side scripting is set of computer programs on the web that are executed by the

user's web browser.

 Web developers write client-side scripts in languages such as JavaScript (Client-side

JavaScript) and VBScript.

 Client-side scripts are written within an HTML document. The script may also be

written in a separate file, which can be referenced by the one or more document(s).

 Client-side scripts contain instructions for the browser. When the user interacts with the

document in a certain way, e.g., when a button is clicked or mouse is moved etc., these

instructions can be followed without any more communication with the server.

3

3.1.2 Server side Scripting

 Server-side scripts are written in languages such as Perl, PHP, ASP.net, JSP etc. These

languages are executed by the web server when the user requests a document.

 Server-side scripting is a web server technology where a user's request is satisfied by

running a script on the web server to generate dynamic HTML pages.

 Server-side scripting is generally used for interactive web sites that interface to

databases or other data stores.

3.1.3 Client side Scripting Vs Server side Scripting

 The difference between a client side script and a server side script is on which computer

the script is executed. Server side scripts are executed on the server and the results are

sent to the client. Client side scripts are executed on the client computer by the Web

browser.

 Server executes server-side scripts and sends the page to the browser but it does not

execute client-side scripts. The browser receives the page sent by the server and

executes the client-side scripts.

 Client-side scripts have more access to the information and functions residing on the

user's browser, whereas Server-side scripts have more access to the information and

functions which are existing on the server.

 Server side scripts can be used to connect to the databases on the web server. Client side

scripting cannot be used for the database connection.

 Server side scripting can access the file system located at the web server. Client side

scripting can’t access the file system locating at the web server.

 The settings of the Web server can be accessed with the help of Server side scripting.

The files and settings at the local user’s computer side can be accessed with Client side

scripting. Due to security restrictions, client-side scripts may not be allowed to access

the user’s computer beyond the browser application.

 The user cannot block server side scripting. While the client side scripting can be

blocked if the user need on browser.

 Since the server side scripting is processed on the remote computer the response server-

side script is slower as compared to a client-side script it is processed. Whereas the

response from a client-side script is faster as compared to a server-side script because

these scripts are processed on the local computer.

 Some examples of Server side scripting languages are PHP, JSP, ASP.Net, Perl, Ruby,

and many more. The examples of Client side scripting languages are Javascript, VB

script, etc.

 Server-side scripts need their language's interpreter installed on the server, and generate

the same output regardless of any browser, operating system, or other system details.

Client-side scripts do not require any additional software other than web browser.

4

3.2 Introduction to JavaScript

 JavaScript is client-side scripting language of Web created by Netscape.

 JavaScript is used in billions of Web pages to add functionality, validate forms,

communicate with the server, and much more.

 JavaScript is programming code that can be inserted into HTML pages.

 JavaScript inserted into HTML pages, can be executed by all modern web browsers.

 Scripts in HTML must be inserted between <script> and </script> tags.

 Scripts can be put in the <body> and in the <head> section of an HTML page.

Advantages of JavaScript

 JavaScript offers several advantages to a Web developer such as a short development

cycle, ease of learning, small size scripts and so on.

 An Interpreted Language: JavaScript is an interpreted language. It does not require

any compilation steps thus, providing an easy development process. The script is

completely interpreted just as HTML tags by browser.

 Embedded within HTML: JavaScript does not require any separate editor for writing

its program, editing or compiling. Any text editor like Notepad, Notepad++, Sublime,

VS Code etc. can be used. The JavaScript code when embedded with appropriate

HTML tags should be saved with .html filename extension. This file can then be read

and interpreted by any browser that is JavaScript enabled.

 Minimal Syntax - Easy to Learn: The syntax follows very simple rule so by learning

just a few commands a complete applications can be built using JavaScript.

 Quick Development: JavaScript does not require any long compilations time. The

scripts can be developed in a short period of time. The different GUI elements, such as

alerts, prompts, confirm boxes, also improve the quick development.

 Designed for simple, small programs: It is suitable to implement small and simple

programs. These programs can be easily written and executed speedily. Also, they can

be easily integrated in a web page.

 Procedural Capabilities: Like all other programming language JavaScript also support

facilities such as condition checking, looping and branching.

 Designed for Programming User Events: JavaScript supports Object/Event based

programming. It identify events like button click, form load etc. JavaScript code can be

attached to this event, which will execute when such event occurs. They are termed as

event handlers.

 Easy Debugging and Testing: As JavaScript is an interpreted language, the script is

tested line by line, and the errors are listed with an appropriate error message. Error

message includes the line number also for every error that is encountered. It is thus easy

to find errors, make changes, and test it again.

 Platform Independence / Architecture Neutral: It is completely independent of the

hardware on which it runs. Thus, it can work on any machine that has JavaScript

enabled browser installed in it. This machine can reside anywhere on the network.

3.2 Structure of JavaScript

 JavaScript is embedded into an HTML file.

 A browser reads HTML files and interprets HTML tags.

5

 So, the browser needs to be informed that certain specific section within HTML code is

JavaScript.

 The browser will then use its built-in JavaScript engine to interpret this code.

 The browser is given this information using the HTML tags <SCRIPT> …</SCRIPT>.

 The <SCRIPT> tag marks the beginning of scripting code and /SCRIPT> marks its end.

 Following explains how <script> tag can be used to embed JavaScript into HTML file.

Syntax:

<script language = ”Javascript” >

// JavaScript codes HERE

</script>

 Language indicates the scripting language used for writing the small piece of scripting

code.

 If not specified now, JavaScript is the default scripting language.

 JavaScript codes can be added in the <head> tag as well as in the <body> tag. There can

be multiple <script> tag in a single web page, but there must be the closing </script> tag

for each opening tag.

Example

<script language = “javascript”>

document.write (“Hello World”);

</script>

 The first line <script language = “JavaScript”> tells the browser that the code written

between the <script> and </script> tags is the JavaScript code.

Using External JavaScript Files

 While using external JavaScript files in a webpage, the JavaScript files must have the

three main features:

o First, the file that you are importing must be a valid JavaScript file.

o Second, the file must have the extension “.js”.

o Lastly, you must know the location of the file.

 Here is the example of using external JavaScript files in a webpage.

<HTML>

<HEAD>

<script src = “myScript.js” >

</script>

<TILTE>title of the page</TITLE>

</HEAD>

<BODY>

 Content of page

</BODY>

</HTML>

 Here myScript.js contains the JavaScript codes and whatever is written in the file will

be displayed in the browser.

 In this condition the myScript.js file and the above HTML file must be in the same

location.

 For implementing the external JavaScript file you must have at least two files: one for

HTML codes and other for JavaScript file.

6

3.3 Data types in JavaScript

Data types can be classified into two major categories:

1. Primitive Data types

 A primitive data type is a data type that stores a single value, such as number and

strings.

2. Composite Data types

 A composite data type, is the same thing as an object.

 It is a data type that can consist of multiple values grouped together in some way.

 JavaScript treats objects as associative arrays.

3.3.1 Primitive Data types

There are four primitive data type, JavaScript provides to us:

a) Numbers

 They represent numeric values.

 The simplest type of number is an integer. It is a number without fractional component.

 Another type of number is a floating point number. JavaScript also has the ability to

handle hexadecimal (four bit) and octal (three bit) numbers.

b) Strings

 A string is sequence of valid characters enclosed in a single or double quotes.

 An empty string is created by two quote marks with nothing between them.

 In order to put some characters in a string, which may not exist on the keyboard, or

some special characters that can't appear as themselves in a string, you need to use an

escape sequence to represent the character.

 An escape sequence is a character or numeric value representing a character that is

preceded by a backslash to indicate that it is a special character.

c) Boolean values

 There are two boolean values, true and false.

 These are normally the result of a logical comparison in your code that returns a

true/false or yes/no result, such as: a = = b

 If you need to use boolean values in computations, JavaScript will automatically

convert true to 1 and false to 0.

 When testing for the result of a comparison, JavaScript will treat any nonzero value as

true, and a zero value as false.

 While testing, if something does not exist, then JavaScript will also evaluate false.

d) Null

 Consists of a single value, null, which identifies a null, empty or nonexistent reference.

3.3.2 Composite Data types

 All composite data types can be treated as objects, but we normally categorize them by

their purpose as a data type.

 For composite data types we will look at objects, including some special predefined

objects that JavaScript provides, as well as functions and arrays.

7

a) Objects

 An object is a collection of named values, called the properties of that object.

 Functions associated with an object are referred to as the methods of that object.

 Properties and methods of objects are referred to with a dot (.) notation that starts with

the name of the object and ends with the name of the property.

 JavaScript has many predefined objects, such as a Date object and a Math object.

b) Functions

 A function is a predefined small piece of code which is executed based on a call to it by

name.

 The function code may be reused many times in the same document.

 A function is a data type in JavaScript.

 Any JavaScript code which is not inside a function is executed when the Web browser

reaches it while first parsing the document.

c) Array

 An Array is an ordered collection of data values.

 In JavaScript, an array is just an object that has an index to refer to its contents. The

elements in the array are numbered, and you can refer to the number position to access

the element.

 The array index is included in square brackets immediately after the array name.

 In JavaScript, the array index starts with zero, so the first element in an array would be

arrayName[0], and the fourth element would be arrayName[3].

 JavaScript does not have multidimensional arrays, but you can nest them, which means

that you can have, an array as an element in another array.

 You access them listing the array numbers starting for the outermost array and working

inward.

 Therefore, the third element (position 2) of or inside the ninth element (position 8)

would be arrayName[8][2].

3.4 JavaScript Variable & Constant

3.4.1 Variable

 Variable is a name that can be used to store values.

 These variables can take different values but one at a time and the value can be changed

during the execution of program.

 Variable names may consist of uppercase character, lowercase character and

underscore.

 Rules to giving the name of variable are as:

o First character should be a either a letter or an underscore.

o The keywords cannot be a variable name..

o Uppercase and lowercase letters are considered different for example code, Code,

CODE are three different variables.

Typing

 JavaScript is an un-typed language.

8

 This means you can use variables directly where you want to use it.

 The variables are declared with the var keyword.

 var variablename=value;

 This keyword declares all types of variables and you can use a same variable as string,

as Integer, as Number and any type of Objects.

 Example:

var a=”Mr. ABC”;

a=12345;

 Both statements are valid in JavaScript as JavaScript is un-typed language.

Scope of a Variable

 Local variables exist only inside a particular function hence they have Local Scope.

 Global variables on the other hand are present throughout the script and

their values can be accessed by any function. Thus, they have Global

Scope.

 JavaScript supports both local as well as global variables.

Local Variables

 The variables which are defined within the body of the function are local to

that function and it is called local variable.

 They cannot be referred outside the function.

 Their values cannot be changed by the main code or other functions.

Example:

< script language=” javascript”>

function testLocal()

{

var a =5;

 document.write(“local value of a is: ” + a);

}

testLocal()

</script>

Output:

Local value of a is: 5

Global Variables

 A variable which is declared outside the function is called global variables.

 The global variable has the same data type and same name throughout the program.

 It is useful to declare the variable global when the variable has constant value

throughout the program.

 These are the variables that can be used throughout the scripts.

Example:

<script language=” javascript”>

var a=10;

function testGlobal()

{

alert(“The global value of a is: ” + a);

9

//displays the value of a as 10

}

testGlobal();

</script>

Here the value of a is global and is accessed within the function testGlobal.

3.4.2 Constant.

 A constant is a value which cannot be changed while the script is running.

 You can create a read only, named constant with the const keyword.

 Its value cannot be even changed through assignment or even cannot be redeclared.

 A constant identifier, just like variable identifier, must start with a letter or underscore

and can contain alphabetic, numeric, or underscore characters.

Example:

const prefix = '212';

 If the keyword ‘const’ is omitted, the identifier is assumed to represent a var.

3.5 Operators in JavaScript

JavaScript has different types of operator, which can be classified by some criteria, such

as:

3.5.1 Number of Operands

 In this type of category, JavaScript supports 3 basic types of operators:

 a) Unary: A unary operator requires a single operand, either before or after the

operator.

Example:

i--;

++i;

b) Binary: A binary operator requires two operands, one before the operator and one

after the operator.

 Example:

var x = 13 + 14;

c) Ternary: This operator is also known as conditional operator. It is the only JavaScript

operator that takes three operands. The operator can have one of two values based on

a condition.

The syntax is:

condition ? value1 : value2 ;

If condition is true, the operator has the value of value1 otherwise it has the value of

value2.

Example:

var c = (a < b) ? a : b;

This statement assigns the value of a to the variable c if a is less than value of

variable b. Otherwise, it assigns the value of b.

3.5.2 Number of Operation.

 JavaScript supports many types of operators. They can be categorized as:

10

a) Conditional Operator: JavaScript also contains a conditional operator that assigns a

value to a variable based on some condition.

Syntax

variablename=(condition)?value1:value2

Example

var greeting = (visitor=="GUEST")?"Welcome Guest":"Hello ";

 If the variable visitor has the value of "GUEST", then the variable greeting will be

assigned the value "Welcome Guest " , otherwise it will be assigned "Hello".

 b) Arithmetic Operators

 Arithmetic operators take numerical values as their operands and return a single

numerical value.

 The standard arithmetic operators are addition(+), subtraction(-), multiplication(*),

and division(/).

 These operators work in the same way like in other programming languages, except

the / operator. It returns a floating point division in JavaScript.

 In addition, JavaScript provides some other arithmetic operators listed in the

following table.

Operator Description Example

%(Modulus) Binary operator. Returns the integer

remainder of dividing the two

operands.

12 % 5 returns 2.

++(Increment) Unary operator. Adds one to its

operand. If used as a prefix operator

(++x), returns the value of its operand

after adding one; if used as a postfix

operator (x++), returns the value of its

operand before adding one.

If x is 3, then ++x

sets x to 4 and

returns 4, whereas

x++ sets x to 4 and

returns 3.

--(Decrement) Unary operator. Subtracts one to its

operand. The return value is analogous

to that for the increment operator.

If x is 3, then --x

sets x to 2 and

returns 2, whereas

x++ sets x to 2 and

returns 3.

-(Unary negation) Unary operator. Returns the negation

of its operand.

If x is 3, then -x

returns -3.

c) Comparison Operators

 A comparison operator compares its operands and returns a logical value either true

or false based on the comparison.

 The operands can be numerical, string, logical, or object values.

 Strings are compared based on standard lexicographical ordering, using unicode

values.

 The following table describes the comparison operators.

Operator Description Example

Equal (==) Returns true if the operands are equal.

If the two operands are not of the same

type, JavaScript attempts to convert

Var1=3

then expression

(Var1 == “3”)

11

the operands to an appropriate type for

the comparison.

returns true

Not equal (!=) Returns true if the operands are not

equal. If the two operands are not of

the same type, JavaScript attempts to

convert the operands to an appropriate

type for the comparison.

expression

(Var1 !=”3”)

returns false

Strict equal (===) Returns true if the operands are equal

and of the same type.

expression

(Var1 ===”3”)

returns false

Strict not equal

(!==)

Returns true if the operands are not

equal and/or not of the same type.

expression

(Var1 !==”3”)

returns true

Greater than (>) Returns true if the left operand is

greater than the right operand.

var2 > var1

Greater than or

equal (>=)

Returns true if the left operand is

greater than or equal to the right

operand.

var2 >= var1

Less than (<) Returns true if the left operand is less

than the right operand.

var1 < var2

Less than or equal

(<=)

Returns true if the left operand is less

than or equal to the right operand.

var1 <= var2

d) Assignment Operators

 An assignment operator assigns a value to its left operand based on the value of its right

operand

 The basic assignment operator is equal (=), which assigns the value of its right operand

to its left operand.

i.e. x = 5 assigns the value 5 to x.

 The other assignment operators are shorthand for standard operations, as shown in the

following table.

Shorthand Operator Meaning

x + = y x = x + y

x -= y x = x – y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x < < y

x >>= y x = x > > y

x >>>= y x = x > > > y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

e) Logical Operators

12

 Logical operators are used with Boolean (logical) values; where they return a Boolean

value.

 The && and || operators return the value of one of the specified operands, so if these

operators are used with non-Boolean values, they may return a non-Boolean value.

 The logical operators are described in the following table.

Operator Description

&&

Logical AND

Expression (expr1 && expr2) ()

Returns true if both operands are true; otherwise, returns false.

||

Logical OR

Expression (expr1 || expr2)

Returns true if either operand is true; if both are false, returns

false.

!

Logical NOT

Expression (!expr1)

Returns false if expr1 is true; otherwise, returns true.

f) delete

 The delete operator deletes an object, an object's property, or an element at a specified

index in an array.

 You can use the delete operator to delete variables declared implicitly but not those

declared with the var statement.

 If the delete operator succeeds, it sets the property or element to undefined.

 The delete operator returns true if the operation is possible; it returns false if the

operation is not possible.

Example:

x=42;

var y= 43;

delete x //returns true (can delete if declared implicitly)

delete y // returns false (cannot delete if declared with var)

g) new

 You can use the new operator to create an instance of a user-defined object type or of

one of the predefined object types Array, Boolean, Date, Function, Image, Number,

Object, Option, RegExp, or String.

Syntax:

objectName = new objectType (param1...[, paramN])

3.6 JavaScript Conditional Statements

 In JavaScript we have the following conditional statements:

o if statement - use this statement to execute a few code only if a specified condition

is true.

o if...else statement - use this statement to execute a few code if the condition is true

and another code if the condition is false.

o if...else if...else statement - use this statement to select one of many blocks of code

to be executed depending on the condition matched.

13

o switch statement - use this statement to select one of many blocks of code to be

executed depending on the case matched.

a) if statement

 Use if statement to execute some code only if a specified condition is true.

Syntax

if (condition)

{

code to be executed if condition is true

}

Example

<script language="javascript">

//Write a "Happy Sunday" greeting if the day is 0 of the week

var d=new Date();

var weekday=d.getDay();

if (weekday==0)

{

document.write("Have a happy Sunday");

}

</script>

 There is no else in this syntax. You tell the browser to execute some code only if the

specified condition is true.

b) if ….. else statement

 Use if...else statement to execute some code if a condition is true and another code if the

condition is not true.

Syntax

if (condition)

{

// code to be executed if condition is true

}

else

{

// code to be executed if condition is not true

}

Example:

<script language="javascript">

// Write a "Happy Sunday" greeting if the day is 0 of the week

// Otherwise it is not happy sunday

var d = new Date();

var weekday = d.getDay();

if (weekday == 0)

{

document.write("Happy Sunday");

}

else

{

document.write("Not a Sunday”)’;

}

</script>

14

c) if ….. else if…..else statement

 Use if...else if...else statement to select one of several blocks of code to be executed.

Syntax

if (condition1)

{

code to be executed if condition1 is true

}

else if (condition2)

{

code to be executed if condition2 is true

}

else

{

code to be executed if neither condition1 nor condition2 is true

}

Example

<script language="javascript">

var d = new Date()

var weekday = d.getDay()

if (weekday==0)

{

document.write("Happy Sunday");

}

else if (weekday==6)

{

document.write("Happy Weekend It’s a Saturday");

}

else

{

document.write("Hectic WeekDay");

}

</script>

 Conditional statements are used to perform different actions based on different

conditions.

d) switch statement

 Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch(n)

{

case 1:

execute code block 1

break;

case 2:

execute code block 2

break;

default:

code to be executed if n is different from case 1 and 2

}

15

 This is how it works:

o First we have a single expression n (most often a variable), that is evaluated once.

o The value of the expression is then compared with the values for each case in the

structure.

o If there is a match, the block of code associated with that case is executed.

o Use break to prevent the code from running into the next case automatically.

Example

<script language="javascript">

//You wil receive a different greeting based on what day it is. Note that

//Sunday=0, Monday=1, Tuesday=2, etc.

var d=new Date();

var weekday=d.getDay();

switch (weekday)

{

case 0:

document.write("Happy Sunday");

break;

case 6:

document.write("Super Saturday");

break;

default:

document.write("Hectic Week Day");

}

</script>

3.7 JavaScript Looping Statements

 Often when you write code, you want the repeat some block of code to run over and

over again. Instead of adding the same lines in a script repeatedly, we can use loops to

perform a job like this.

 In JavaScript, there are following types of loops:

1. for - loops through a block of code a specified number of times

2. while - loops through a block of code while a specified condition is true

3. do..whle - loops through a block of code once, and then repeats the loop while

a condition is true

a) The for loop

 The for loop is used when you know in advance how many times the script should run.

Syntax

for (initialization; terminating condition; increment/ decrement)

{

code to be executed

}

Example

 The example below defines a loop that starts with i=0. The loop will continue to run as

long as i is less than, or equal to 5. i will increase by 1 each time the loop runs.

Example:

16

<html>

<body>

<script language="javascript">

var i=0;

for (i=0;i<=5;i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

Output:

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

b) The while loop

 The while loop loops through a block of code till a specified condition is true.

Syntax

while (condition)

code to be executed

}

Example

<html>

<body>

<script language="javascript">

var i=0;

while (i<=5)

{

document.write("The number is " + i);

document.write("
");

i++;

}

</script>

</body>

</html>

Output:

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

17

c) The do…..while loop

 The do...while loop is a variant of the while loop. This loop will execute the block of

code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax

do

{

code to be executed

}while (condition);

Example

<html>

<body>

<script language="javascript">

var i=0;

do

{

document.write("The number is " + i);

document.write("
");

i++;

} while (i<=5);

</script>

</body>

</html>

Output:

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

3.8 Break & Continue Statements

3.8.1 The break statement

 The break statement will break the loop and continue executing the code that follows

after the loop (if any).

Example

<html>

<body>

<script language="javascript">

var i=0;

for (i=0;i<=5;i++)

{

if (i==3)

{

break;

}

document.write("The number is " + i);

document.write("
");

}

</script>

18

</body>

</html>

Output:

The number is 0

The number is 1

The number is 2

3.8.2 The continue Statement

 The continue statement will break the current loop and continue with the next value.

Example:

<html>

<body>

<script language="javascript">

var i=0

for (i=0;i<=10;i++)

{

if (i==3)

{

continue;

}

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

Output:

The number is 0

The number is 1

The number is 2

The number is 4

The number is 5

3.9 JavaScript Strings

 JavaScript string is a series of characters.

 A string is any text between quotes. It can be written using single or double-quotes.

Following are the valid string:

book_name = "Concept of web technology";

book_name = ' Concept of web technology ';

 It is possible to use quotes inside a string. If you want a single quote inside a string, then

write a string in double-quotes. If you want a double quote inside a string, then write a

string in single quotes.

 Example:

19

book_name = "It's web technology ";

book_name = "it is web technology 'book'";

book_name = 'it is web technology "book "';

3.9.1 String functions

 Following is the list of a string function. Java script string starts at index position 0.

Method Description

charAt() Returns the character at the specified index position.

concat() Combines two strings and returns a new string.

indexOf() Returns the location of the first occurrence of the specified value.

Returns -1 if the value is not found.

lastIndexOf() Returns the location of the last occurrence of the specified value.

Returns -1 if the value is not found.

replace() It is used to replaces a part of a given string with the specified

string.

search() It searches a specified value or regular expression in a given string

and returns its position. If a match is not found then it returns -1.

trim It is used to remove white space from the left and right of the

string.

split() It is used to convert a string to an array of strings.

slice() It is used to extract string between two given positions.

substring() It is used to extract string between two given positions. It is similar

to slice, except that substring () does not accept a negative value.

substr() It is used to extract subpart of string. Here subpart of the string is

starting at the specified position and extending for a given number

of characters.

toLowerCase() It is used to converted string to lower case.

toUpperCase() It is used to convert string to uppercase.

 Following example demonstrate various string functions:

<script>

str1 = "Web Technology";

str2="Concept"

document.write(str1.substr(3,5));

document.write("
");

document.write(str1.charAt(2));

document.write("
");

document.write(str1.concat(str2));

document.write("
");

document.write(str1.indexOf("Tec"));

document.write("
");

20

document.write(str1.replace("Technology", "Designing"));

document.write("
");

document.write (str1.search("Tec"));

document.write("
");

document.write(str1.slice(3,7));

document.write("
");

document.write(str1.substr(3,7));

document.write("
");

document.write(str1.toLowerCase())

document.write("
");

document.write(str1.toUpperCase())

document.write("
");

</script>

Output:

b

Web TechnologyConcept

4

Web Designing

4

Tec

Techno

web technology

WEB TECHNOLOGY

3.10 JavaScript Events & Event Handlers

 Events are some activity performed by the user or by the browser. HTML events are

action that happens to HTML elements which can trigger a JavaScript.

 Events are keyboard, mouse, or other actions that can be detected by JavaScript.

 For example, we can use the click event of a button to execute a function.

 We define the events in the HTML tags.

Examples of events:

o A mouse click

o A web page loading, finished loading

o Image loading

o Entering a value in an input field

o Submitting a form

a) Mouse events:

Following is the list of mouse events:

Action/Event Event name/

Handler

Description

click onclick This event occurs when user clicks on an

element.

mouseover onmouseover This event occurs when the cursor of the mouse

bring over the element

21

mousemove onmousemove This event occurs when the mouse pointer is

moved

mouseout onmouseout This event occurs when the cursor of the mouse

leaves an element

mouseup onmouseup This event occurs when the mouse button is

released over the element

b) Keyboard events:

Following is the list of Keyboard events:

Action/Event Event name/

Handler

Description

Keyup onkeyup This event occurs when the user release the key

Keydown onkeydown This event occurs when the user press the key

c) Form events:

Following is the list of form events:

Action/Event Event name/

Handler

Description

focus onfocus This event occurs when an element gets focus

blur onblur This event occurs when an element lost focus. i.e the focus

is away from an element.

submit onsubmit This event occurs when the user submits the form

change onchange This event occurs when the user modifies the value of a

form element

 Focus and blur are opposite events.

Event Handlers

 Event handlers are nothing but functions that executes when a particular event occurs.

 Event handlers are a way to run JavaScript code in case of user actions.

 In JavaScript, all the event handlers start with the word on.

 The syntax of event handlers is:

name_of_handler="JavaScript code"

 Example of click event:

Following code display message in alert box when user click button.

Note: Events are used in combination with functions. You will learn more about functions in

chapter 5.

22

<script>

function function_name() {

alert("Concept Of Web Technology")

}

</script>

<body>

<button onclick="function_name()">demo of click event </button>

</script>

Output:

When a user clicks on “demo of click event”, the following alert box will display.

Example of onmouseover and onmouseout:

Following code demonstrate onmouseover and onmouseout event. When user move

mouse over the image, image will bigger and when mouse is out, image will display

normally.

<!DOCTYPE html>

<html>

<script>

function bigger() {

 document.getElementById("sample").style.height = "100px";

 document.getElementById("sample").style.width = "100px";

 }

function normal() {

 document.getElementById("sample").style.height = "50px";

 document.getElementById("sample").style.width = "50px";

}

</script>

<body>

<img id="sample" onmouseover="bigger()" onmouseout="normal()"

src="jagin.jpg" width="40" height="40">

</body>

</html>

Example of onfocus and onblur:

 Following example demonstrate onfocus and onblur events. When user click on text

box, text box get focus and onfocus event occur. Here it will display text “focus is with

text box” in text box. When user click outside textbox, textbox lost focus and onblur

event occur. It will display text “focus is away from text box” in text box.

<script>

function get_focus() {

var x = document.getElementById("sample");

x.value = "focus is with text box";

}

function lost_focus() {

var x = document.getElementById("sample");

x.value = "focus is away from text box";

}

23

</script>

<body>

Demo of focus and blur event: <input type="text" id="sample"

onfocus="get_focus()" onblur="lost_focus()" >

</body>

